THE KEY POLICY RATE AS A MONETARY POLICY INSTRUMENT: FORECASTING WITH ECONOMETRIC METHODS

Keywords: key policy rate, autoregressive model, policy interest rate, Taylor rule, ARIMA model, VAR model, monetary policy

Abstract

The purpose of the investigation is forecasting of the key policy rate of Ukraine with econometric methods and models, namely autoregressive models. The following research methods were used in the investigation: methods of economic and mathematical modeling, econometric analysis, autoregressive models, ARIMA and VAR models. One of the main tools of monetary policy is the key policy rate. The most famous monetary rule for setting the discount rate is known as the Taylor rule. Making correct decisions regarding the level of the key policy rate involves the use of mathematical methods and models for forecasting the main macroeconomic indicators of the country's development, in particular, econometric methods and models. The economic variables that affect the real GDP of Ukraine are analyzed. The results of the analysis of variables for causality and the test of series for stationarity are presented. An approach to modeling the real GDP of Ukraine with ARIMA and VAR models was implemented and a forecast for the first quarter of 2022 was obtained. It is worth noting that the model reflects the trend until 2022 without taking into account the war factor. The Taylor monetary rule was applied to forecast the key policy rate for the first quarter of 2022. The situation before russia full-scale invasion of Ukraine and the current situation regarding the level of inflation and the forecast of real GDP are also analyzed. The implemented models are adequate, which is confirmed by a number of econometric tests, so it can be used for modeling and forecasting the quarterly real GDP in Ukraine. The application of Taylor classical monetary rule indicates the expediency of its use for the economy of Ukraine. According to forecasts of the ARIMA model, the key policy rate should be set at the level of 10.5%, and according to the forecast of the VAR model, at the level of 11%. So, in order to achieve the goal of monetary policy, it is advisable to use the classical Taylor rule for the economy of Ukraine, but a sustainable model of the economy should be developed and inflation risks should be taken into account when making decisions. The NBU should conduct a restraining monetary policy due to inflationary risks. Currently, because of the war, monetary instruments of influence are ineffective, so the NBU first decided to keep the discount rate at 10%, and later increased it to 25%.

References

Bernanke B. S. The new tools of monetary policy. American Economic Review. 2020. Vol. 110(4). P. 943-83.

Twinoburyo E. N., Odhiambo N. M. Monetary policy and economic growth: A review of international literature. Journal of Central Banking Theory and Practice. 2018. Vol. 7(2). P. 123-137.

Altavilla C., Brugnolini L., Gürkaynak R. S., Motto R., Ragusa G. Measuring euro area monetary policy. Journal of Monetary Economics. 2019. Vol. 108. P.162-179.

Kalemli-Özcan Ṣ. US monetary policy and international risk spillovers. National Bureau of Economic Research. 2019. No. w26297

Aguilar A., Cantú C. Monetary policy response in emerging market economies: why was it different this time? Bank for International Settlements. 2020. № 32.

Вдовин М., Міщук Т. Рейтингування регіонів України за показниками добробуту населення. Вісник Сумського національного аграрного університету. 2022. Vol. 1 (91). P. 3-9.

Вдовин М., Зомчак Л., Міщук Т. Аналітика сучасного стану добробуту населення України. Економіка та суспільство. 2022. Vol. 39.

Bacchiocchi E., Fanelli L. Identification in Structural Vector Autoregressive models with structural changes, with an application to US monetary policy. Oxford Bulletin of Economics and Statistics. 2015. Vol. 77(6). P. 761-779.

Spulbar C., Birau R. Analysis of the Monetary Policy Dynamics in Romania Using a Structural Vector Autoregressive Model. Research Anthology on Macroeconomics and the Achievement of Global Stability. 2023. P. 788-799.

Anwar S., Nguyen L. P. Channels of monetary policy transmission in Vietnam. Journal of Policy Modeling. 2018. Vol. 40(4). P. 709-729.

Arwatchanakarn P. Structural vector autoregressive analysis of monetary policy in Thailand. Sociology Study. 2017. Vol. 7(3). P. 133-145.

Korobilis D. Assessing the transmission of monetary policy using time‐varying parameter dynamic factor models. Oxford Bulletin of Economics and Statistics. 2013. Vol. 75(2). P. 157-179.

Hanisch M. The effectiveness of conventional and unconventional monetary policy: Evidence from a structural dynamic factor model for Japan. Journal of International Money and Finance. 2017. Vol. 70. P. 110-134.

Funke M., Tsang A. The direction and intensity of China’s monetary policy: A dynamic factor modelling approach. Economic Record. 2021. Vol. 97(316). P. 100-122.

Nyoni T. Modeling and forecasting inflation in Kenya: Recent insights from ARIMA and GARCH analysis. Dimorian Review. 2018. Vol. 5(6). P. 16-40.

Nyoni T. Modeling and forecasting Naira/USD exchange rate in Nigeria: a Box-Jenkins ARIMA approach. MPRRA. 2018. 88622. 1–36.

Зомчак Л. М., Лапінкова А. О. Інфляційні процеси України: авторегресійна дистрибутивно-лагова модель. Цифрова економіка та економічна безпека. 2022. Вип. 1 (01). С. 50-55.

Krušković. B. D. Exchange rate and interest rate in the monetary policy reaction function. Journal of Central Banking Theory and Practice. 2017. Vol. 6(1). P. 55-86.

Angelina S., Nugraha N. M. Effects of Monetary Policy on Inflation and National Economy Based on Analysis of Bank Indonesia Annual Report. Technium Soc. Sci. J..2020. Vol. 10. P. 423.

Національний банк України. Статистика. URL: https://bank.gov.ua/ua/statistic (дата звернення: 05.09.2022).

Державна служба статистики України URL: http://www.ukrstat.gov.ua/ (дата звернення: 05.09.2022).

Bernanke, B. S. (2020). The new tools of monetary policy. American Economic Review, vol. 110(4), pp. 943-83.

Twinoburyo, E. N., & Odhiambo, N. M. (2018). Monetary policy and economic growth: A review of international literature. Journal of Central Banking Theory and Practice, vol. 7(2), pp. 123-137.

Altavilla, C., Brugnolini, L., Gürkaynak, R. S., Motto, R., & Ragusa, G. (2019). Measuring euro area monetary policy. Journal of Monetary Economics, vol. 108, pp. 162-179.

Kalemli-Özcan, Ṣ. (2019). US monetary policy and international risk spillovers. National Bureau of Economic Research, no. w26297.

Aguilar, A., & Cantú, C. (2020). Monetary policy response in emerging market economies: why was it different this time? Bank for International Settlements, No. 32.

Vdovyn, M. YA., & Mishchuk, T. (2022). Reytynhuvannya rehioniv Ukrayiny za pokaznykamy dobrobutu naselennya [Rating of regions of Ukraine according to indicators of population well-being]. Visnyk Sumsʹkoho natsionalʹnoho ahrarnoho universytetu, vol. 1 (91), pp. 3-9.

Vdovyn, M., Zomchak, L., & Mishchuk, T. (2021). Analityka suchasnoho stanu dobrobutu naselennya Ukrayiny [Analysis of the current state of well-being of the population of Ukraine]. Economy and Society, vol. 39, pp. 2524-0072.

Bacchiocchi, E., & Fanelli, L. (2015). Identification in Structural Vector Autoregressive models with structural changes, with an application to US monetary policy. Oxford Bulletin of Economics and Statistics, vol. 77(6), pp. 761-779.

Spulbar, C., & Birau, R. (2023). Analysis of the Monetary Policy Dynamics in Romania Using a Structural Vector Autoregressive Model. In Research Anthology on Macroeconomics and the Achievement of Global Stability. IGI Global, pp. 788-799

Anwar, S., & Nguyen, L. P. (2018). Channels of monetary policy transmission in Vietnam. Journal of Policy Modeling, vol. 40(4), pp. 709-729.

Arwatchanakarn, P. (2017). Structural vector autoregressive analysis of monetary policy in Thailand. Sociology Study, vol. 7(3), pp. 133-145.

Korobilis, D. (2013). Assessing the transmission of monetary policy using time‐varying parameter dynamic factor models. Oxford Bulletin of Economics and Statistics, vol. 75(2), pp. 157-179.

Hanisch, M. (2017). The effectiveness of conventional and unconventional monetary policy: Evidence from a structural dynamic factor model for Japan. Journal of International Money and Finance, vol. 70, pp. 110-134.

Funke, M., & Tsang, A. (2021). The direction and intensity of China’s monetary policy: A dynamic factor modelling approach. Economic Record, vol. 97(316), pp. 100-122.

Nyoni, T. (2018). Modeling and forecasting inflation in Kenya: Recent insights from ARIMA and GARCH analysis. Dimorian Review, vol. 5(6), pp. 16-40.

Nyoni, T. (2018). Modeling and forecasting Naira/USD exchange rate in Nigeria: a Box-Jenkins ARIMA approach. MPRRA, 88622, pp. 1–36.

Zomchak, L. M., & Lapinkova, A. O. (2022). Inflyatsiyni protsesy Ukrayiny: avtorehresiyna dystrybutyvno-lahova model [Inflationary processes of Ukraine: autoregressive distributive-lag model]. Tsyfrova ekonomika ta ekonomichna bezpeka, vol. 1 (01), pp. 50-55.

Krušković, B. D. (2017). Exchange rate and interest rate in the monetary policy reaction function. Journal of Central Banking Theory and Practice, vol. 6(1), pp. 55-86.

Angelina, S., & Nugraha, N. M. (2020). Effects of Monetary Policy on Inflation and National Economy Based on Analysis of Bank Indonesia Annual Report. Technium Soc. Sci. J., vol. 10, p. 423.

Natsionalnyi bank Ukrainy [National Bank of Ukraine]. Statystyka. Available at: https://bank.gov.ua/ua/statistic (accessed 05.09.2022).

Derzhavna sluzhba statystyky Ukrainy [State Statistics Service of Ukraine]. Available at: http://www.ukrstat.gov.ua/ (accessed 05.09.2022).

Article views: 226
PDF Downloads: 180
Published
2022-09-26
How to Cite
Zomchak, L., & Lapinkova, A. (2022). THE KEY POLICY RATE AS A MONETARY POLICY INSTRUMENT: FORECASTING WITH ECONOMETRIC METHODS. Digital Есопоmу and Economic Security, (2 (02), 39-45. https://doi.org/10.32782/dees.2-7