IMPROVING FORECASTING OF AGRIBUSINESS DEVELOPMENT BASED ON GARCH MODELS AND INTERNET OF THINGS (IOT) TECHNOLOGIES
Abstract
Based on the analyzed aspects, forecasting the development of agribusiness using IoT is an essential and necessary process in the modern agricultural sector. It is argued that the application of IoT technologies significantly enhances agribusiness efficiency through resource optimization, process automation, and improved risk management. It has been established that GARCH models are powerful tools for modeling and forecasting conditional volatility in time series, particularly regarding agricultural product prices and yields. However, it is demonstrated that GARCH models have several limitations, including complexity, stationarity requirements, limitations in predicting extreme events, linearity, assumptions of normally distributed residuals, high data requirements, limited interpretability, lack of external factor integration, and delayed response to changes. To address these limitations, an improved model incorporating a comprehensive forecasting approach is proposed. It is substantiated that using AIC and BIC criteria to select the optimal number of lags simplifies the model and reduces overfitting risks. Additionally, performing the Dickey-Fuller test ensures the time series meets stationarity conditions. Extended models such as EGARCH are employed to account for asymmetric effects and shocks, improving extreme event prediction. Nonlinearity in data is addressed by integrating machine learning models, specifically LSTM, capable of capturing complex relationships. Alternative residual distributions, such as t-distribution or GED, overcome the assumption of normality. Methods of transfer learning mitigate the requirement for large data volumes, enabling improved modeling on smaller datasets. Limited interpretability is addressed through result visualization and simpler models for initial analysis. Additionally, external factors like weather conditions are integrated using GARCH-X models, ensuring a comprehensive forecasting approach. The delayed response to changes is resolved by applying adaptive GARCH model versions that update parameters in real-time. Thus, it is justified that employing a comprehensive modeling approach combining traditional GARCH models, modern machine learning methods, and external factors provides more accurate and reliable forecasts for IoT-based agribusiness development.
References
Grynko, T., Hviniashvili, T. & Romanova, L. A. Scientific-methodical approach to the formation of a management mechanism for the development of the enterprise innovative potential. Innovation and Sustainability. 2022. Vol. 4. P. 30-38. DOI: https://doi.org/10.31649/ins.2022.4.30.38
Кушнір О., Жигулін О. Механізм формування інклюзивної моделі розвитку бізнесу в агропродовольчій, готельній і ресторанній сферах. Food Industry Economics. 2022. № 14(1). DOI: https://doi.org/10.15673/fie.v14i1.2264
Фролова Л. В., Котов Б.В. Тенденції розвитку підприємницьких структур в Україні. Економічний журнал Одеського політехнічного університету. 2022. № 4 (22). С. 52-61. DOI: https://doi.org/10.15276/EJ.04.2022.6
Milian G., Jorge F., and Delgado T. Sustainable Management of Environmental Risks in Agricultural Production: Ensuring the Right to Food. Global Jurist. 13 January 2022. Р. 1-19. DOI: https://doi.org/10.1515/gj-2021-0086
Kucher L., Knіaz S., Pavlenko O., Holovina O., Shayda O., Franiv I., & Dzvonyk V. Development of Entrepreneurial Initiatives in Agricultural Business: A Methodological Approach. European Journal of Sustainable Development. 2021. Vol. 10. No. 2. Р. 321-335. DOI: https://doi.org/10.14207/ejsd.2021.v10n2p321.
Erisman J.W. Setting ambitious goals for agriculture to meet environmental targets. One Earth. 2021. Vol. 4. Р. 15–18. DOI: https://doi:10.1016/j.oneear.2020.12.007 .
Khadija van der Straaten, Rajneesh Narula and Elisa Giuliani. The multinational enterprise, development, and the inequality of opportunities: A research agenda. Journal of International Business Studies. 2023. DOI: https://doi.org/10.1057/s41267-023-00625-y
Кернасюк Ю.В. Прогноз розвитку аграрного сектору економіки з використанням штучних нейронних мереж, Вісник аграрної науки, 2019. Том 97. № 6. С. 75-81. DOI: https://doi.org/20.31073/agrovisnyk201906-11
D. Akullo, H. Maat, A.E.J. Wals. An institutional diagnostics of agricultural innovation; Public-private partnerships and smallholder production in Uganda, NJAS – Wageningen J. Life Sci. 2019. Vol.84 P. 6-12. DOI: https://doi.org/10.1016/j.njas.2017.10.006
Grynko, T., Hviniashvili, T. & Romanova, L. A. (2022). Scientific-methodical approach to the formation of a management mechanism for the development of the enterprise innovative potential. Innovation and Sustainability. Vol. 4. 30-38. DOI: https://doi.org/10.31649/ins.2022.4.30.38
Kushnir O., Zhyhulin O. (2022). Mekhanizm formuvannya inklyuzyvnoyi modeli rozvytku biznesu v ahroprodovolʹchiy, hotelʹniy i restoranniy sferakh. [The mechanism of formation of an inclusive model of business development in the agro-food, hotel and restaurant spheres]. Food Industry Economics. №14(1). https://doi.org/10.15673/fie.v14i1.2264 [in Ukrainian].
Frolova L. V., Kotov B.V. (2022). Tendentsiyi rozvytku pidpryyemnytsʹkykh struktur v Ukrayini. [Trends in the development of entrepreneurial structures in Ukraine]. Ekonomichnyy zhurnal Odesʹkoho politekhnichnoho universytetu. Vol. 4. No. 22. 52-61. DOI: https://doi.org/10.15276/EJ.04.2022.6 [in Ukrainian].
Milian G., Jorge F., and Delgado T. (2022). Sustainable Management of Environmental Risks in Agricultural Production: Ensuring the Right to Food. Global Jurist. 13 January 2022. Р. 1-19. DOI: https://doi.org/10.1515/gj-2021-0086
Kucher L., Knіaz S., Pavlenko O., Holovina O., Shayda O., Franiv I., & Dzvonyk V. (2021). Development of Entrepreneurial Initiatives in Agricultural Business: A Methodological Approach. European Journal of Sustainable Development. Vol. 10. No. 2. Р. 321-335. DOI: https://doi.org/10.14207/ejsd.2021.v10n2p321.
Erisman J.W. (2021). Setting ambitious goals for agriculture to meet environmental targets. One Earth. Vol. 4. Р. 15–18. DOI: https://doi:10.1016/j.oneear.2020.12.007
Khadija van der Straaten, Rajneesh Narula and Elisa Giuliani. (2023). The multinational enterprise, development, and the inequality of opportunities: A research agenda. Journal of International Business Studies. DOI: https://doi.org/10.1057/s41267-023-00625-y
Kernasyuk YU.V. (2019). Prohnoz rozvytku ahrarnoho sektoru ekonomiky z vykorystannyam shtuchnykh neyronnykh merezh. [Forecast of the development of the agricultural sector of the economy using artificial neural networks]. Visnyk ahrarnoyi nauky. Vol. 97. No. 6. 75-81. DOI: https://doi.org/20.31073/agrovisnyk201906-11 [in Ukrainian].
D. Akullo, H. Maat, A.E.J. Wals. (2019). An institutional diagnostics of agricultural innovation; Public-private partnerships and smallholder production in Uganda, NJAS – Wageningen J. Life Sci. Vol.84 P. 6-12. DOI: https://doi.org/10.1016/j.njas.2017.10.006