STATISTICAL ANALYTICS OF FINANCIAL STABILITY OF ENTERPRISES: METHODS OF ASSESSMENT AND FORECASTING

Keywords: statistical analytics, financial stability, forecasting, risks, financial analysis, liquidity, profitability

Abstract

The purpose of the article is to identify modern methods of statistical analytics for assessing and forecasting the financial stability of enterprises, as well as to justify their application in conditions of market instability. The study uses a comprehensive approach to statistical analytics of the financial stability of enterprises. The methods of correlation-regression analysis are considered to determine the relationships between financial indicators, as well as cluster analysis for grouping enterprises by the level of stability. Time series methods are evaluated to predict changes in financial condition. Content analysis is carried out on the basis of official statistical data and the processing of literary sources on the topic of the study. The results obtained are interpreted based on the method of logical generalization taking into account macroeconomic factors. The article considers the main aspects of statistical analytics of financial stability of enterprises and its significance for assessing and forecasting their development. Key approaches to the analysis of financial stability based on the use of statistical methods of processing and interpreting financial data are identified. The impact of liquidity, profitability, autonomy and financial leverage on the overall stability of enterprises is analyzed. The features of the application of correlation-regression analysis, factor analysis and clustering methods to determine the level of financial stability and identify patterns in the financial activities of enterprises are clarified. The possibilities of forecasting changes in financial condition using statistical time series models and neural networks are investigated. The advantages of statistical analytics compared to traditional methods of financial analysis are identified, which allows ensuring the objectivity of assessment and accuracy of forecasting. Factors affecting the financial stability of enterprises are investigated, in particular the level of asset diversification, capital structure and macroeconomic conditions. Mechanisms for minimizing financial risks are identified through the application of statistical methods of sensitivity analysis and scenario modeling.

References

Дзямулич М. І. Особливості страхування інвестиційних проектів в умовах нестабільності фінансових ринків. Економічний форум. 2011. №1. С. 185-189.

Дзямулич М. І., Чиж Н. М. Страхування інвестицій та диверсифікація інвестиційних ризиків. «Економічні науки». Серія «Облік і фінанси». 2013. Випуск 10 (37). С. 21-26.

Кравченко М. О., Павленко Т. А. Проблеми забезпечення інвестиційної привабливості вітчизняних підприємств: макроекономічні аспекти. Економіка та суспільство. 2022. №44.

Стаднюк Т. В., Шматковська Т. О. Статистичний аналіз зовнішньої торгівлі Волинської області. Економічний аналіз. 2016. №23(1). С. 79–87.

Шматковська Т. О., Коробчук Т. І., Борисюк О. В. Сучасні інформаційно-комунікаційні технології в системі обліково-аналітичного забезпечення щодо моделювання бізнес-процесів. Економіка та суспільство. 2023. №53.

Altman E. I. Predicting financial distress of companies: revisiting the Z-score and ZETA® models. In Handbook of research methods and applications in empirical finance (pp. 428–456). Cheltenham : Edward Elgar Publishing, 2013.

Dziamulych M., Petrukha, S., Yakubiv V., Zhuk, O., Maiboroda, O., Tesliuk, S., Kolosok, A. Analysis of the socio-demographic state of rural areas in the system of their sustainable development: a case study of Ukraine. Scientific Papers Series “Management, Economic Engineering in Agriculture and Rural Development”. 2021. Vol. 21(4). Pp. 223–234.

Khan S., Alghulaiakh H. ARIMA model for accurate time series stocks forecasting. International Journal of Advanced Computer Science and Applications, 2020. Vol. 11(7). Pp. 524–528.

Modigliani F., Miller M. H. The cost of capital, corporation finance and the theory of investment. The American economic review. 1958. Vol. 48(3). Pp. 261–297.

Wagner M., Blom J. The reciprocal and non‐linear relationship of sustainability and financial performance. Business Ethics: A European Review. 2011. Vol. 20(4). Pp. 418–432.

Dziamulych M. I. (2011) Osoblyvosti strakhuvannia investytsiinykh proektiv v umovakh nestabilnosti finansovykh rynkiv [Peculiarities of insurance of investment projects in conditions of instability of financial markets]. Ekonomichnyi forum, vol. 1, pp. 185–189 (in Ukrainian).

Dziamulych M. I., Chyzh N. M. (2013). Strakhuvannia investytsiy ta dyversyfikatsiia investytsiinykh ryzykiv [Investment insurance and diversification of investment risks]. Ekonomichni nauky. Seria "Oblik ta finansy", vol. 10(37), pp. 21–26 (in Ukrainian).

Kravchenko M. O., Pavlenko T. A. (2022). Problemy zabezpechennia investytsiinoi pryvablyvosti vitchyznianykh pidpryiemstv: makroekonomichni aspekty [Problems of ensuring investment attractiveness of domestic enterprises: macroeconomic aspects]. Ekonomika ta suspilstvo, vol. 44 (in Ukrainian).

Stadniuk T. V., Shmatkovska T. O. (2016). Statystychnyi analiz zovnishnoi torhivli Volynskoi oblasti [Statistical analysis of foreign trade of the Volyn region]. Ekonomichnyi analiz, vol. 23(1), pp. 79–87 (in Ukrainian).

Shmatkovska T. O., Korobchuk T. I., Borysiuk O. V. (2023). Suchasni informatsiino-komunikatsiini tekhnolohii v systemi oblikovo-analitychnoho zabezpechennia shchodo modeliuvannia biznes-protsesiv [Modern information and communication technologies in the system of accounting and analytical support for modeling business processes]. Ekonomika ta suspilstvo, vol. 53 (in Ukrainian).

Altman E. I. (2013). Predicting financial distress of companies: revisiting the Z-score and ZETA® models. In Handbook of research methods and applications in empirical finance (pp. 428–456). Edward Elgar Publishing.

DziamulychbM., Petrukha S., Yakubiv V., Zhuk O., Maiboroda O., Tesliuk S., Kolosok A. (2021). Analysis of the socio-demographic state of rural areas in the system of their sustainable development: a case study of Ukraine. Scientific Papers Series “Management, Economic Engineering in Agriculture and Rural Development”, vol. 21(4), pp. 223–234.

Khan S., Alghulaiakh H. (2020). ARIMA model for accurate time series stocks forecasting. International Journal of Advanced Computer Science and Applications, vol. 11(7), pp. 524–528.

Modigliani F., Miller M. H. (1958). The cost of capital, corporation finance and the theory of investment. The American economic review, vol. 48(3), pp. 261–297.

Wagner M., Blom J. (2011). The reciprocal and non‐linear relationship of sustainability and financial performance. Business Ethics: A European Review, vol. 20(4), pp. 418–432.

Article views: 16
PDF Downloads: 8
Published
2025-01-27
How to Cite
Talakh, V., & Talakh, T. (2025). STATISTICAL ANALYTICS OF FINANCIAL STABILITY OF ENTERPRISES: METHODS OF ASSESSMENT AND FORECASTING. Digital Есопоmу and Economic Security, (1 (16), 145-149. https://doi.org/10.32782/dees.16-22