DETERMINATION OF A PROMISING BUSINESS AND MODELING OF THE OPTIMUM STRATEGIC SETS FOR THE ENTERPRISES THROUGH MORPHOLOGICAL ANALYSIS USING THE CAPABILITIES OF ARTIFICIAL INTELLIGENCE

Keywords: business, data, morphological analysis, enterprise strategy, strategic set of the enterprise, strategic decisions, strategic alternatives, artificial intelligence, artificial neural networks, Big Data, Data mining, Deep learning, machine learning, business organization driven by data

Abstract

Decision-making in current conditions of uncertainty has become a real challenge for most business organizations. Therefore, the permanent analysis of all possible and the selection of the most likely scenarios for the development of the business environment and business of the enterprise based on large data sets about the external and internal environment of the enterprise and the processes, which take place there, becomes necessary for the justification of effective management decisions by managers of entrepreneurial organizations and individual business projects. The analysis of possible scenarios of the development of events, the so-called "What if", creates with the help of artificial intelligence (AI) a simulated environment, where it is possible to test various changes in the conditions (opportunities and threats, advantages and disadvantages) of the business, see their impact and, accordingly, make the best possible strategic and tactical management decisions to ensure the success of the business organization in its business activities. In the article, we propose the architecture of the model of applying the concept of artificial intelligence (AI) and artificial neural networks (ANN) to create a data-driven business organization, in particular, in matters of choosing a promising business and developing a strategy for its development in modern dynamic conditions. To perform this task within the framework of ANN, it is proposed to apply the method of morphological analysis of Fritz Zwicki, the essence of which is to structure and study the general set of connections contained in multidimensional, non-quantitatively defined, problematic complexes. In the context of the development of IT, primarily such as ANN, "Big Data" and "Data mining", this method is becoming more relevant than ever and received a new lease of life, in particular, in matters of choosing promising business areas from the point of view of ensuring future profitability and developing strategies for their development and ensuring competitiveness. The use of computer morphological analysis for structuring such complex issues as the choice of a promising business in the future and the generation of strategic alternatives for this business on the basis of data significantly improves, elevates to a higher level the planning, development of scenarios and strategies for the development of the enterprise. Artificial intelligence and machine learning algorithms can be effectively applied through the application of morphological analysis to analyze the large volumes of data that are embedded in every decision, interaction and process in an enterprise in real time, and thus discover patterns that would be impossible to uncover using traditional methods, and then use this information to make both strategic and tactical management decisions.

References

Zwicky F. Discovery, Invention, Research – Through the Morphological Approach. Toronto: The Macmillan Company. 1969. 276 р.

Zwicky F., Wilson A. (eds.) New Methods of Thought and Procedure: Contributions to the Symposium on Methodologies, Berlin: Springer. 1967 URL: https://www.semanticscholar.org/paper/F.-Zwicky-and-A.-G.-Wilson-(eds.)%3A-New-Methods-of-Wilson/5abd5d14a0b104e1bfea7420466f0dece5de60c4

Том Річі. Загальний морфологічний аналіз. Загальний метод некількісного моделювання. Шведське морфологічне товариство, 2002. URL: https://ia801205.us.archive.org/12/items/ritchey_swemorph_Gma/gma.pdf

Minsky M.L., Papert S.S. Perceptrons: An Introduction to Comtutational Geometry. MIT Press, Cambrige, MA, 1969. 308 р. URL: https://rodsmith.nz/wp-content/uploads/Minsky-and-Papert-Perceptrons.pdf

Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 1958. Vol. 65. № 6. P. 386-408. URL: https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf

Perceptrons: An Associative Learning Network by Michele D. Estebon Virginia Tech CS 3604, Spring 1997. URL: https://ei.cs.vt.edu/~history/Perceptrons.Estebon.html

Turban, E. Decision support and expert systems: management support systems. Englewood Cliffs, N.J.: Prentice Hall, 1995. 930 р.

Big data: The next frontier for innovation, competition, and productivity. Report / James Manyika, Michel Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, Angela Hung Byers. McKinsey Global Іnstіtute. May 2011. URL: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation#

MacAfee, E. Brynjolfsson, “Big Data: The Management Revolution,” Harvard Business Review 90, no. 10 (October 2012). URL: https://hbr.org/2012/10/big-data-the-management-revolution

Fleener W., Fitzgerald M. «General Mills Builds Up Big Data to Answer Big Questions», MIT Sloan Management Review, 29/05/2015. URL: https://www.sloanreview.mit.edu

Ju. Bai, Ji. Fan and R. Tsay. Special Issue on Big Data. Journal of Business &Economic Statistics. 2016. Vol. 34. Issue 4. P. 487–488.

.Kiron, David. Lessons from Becoming a Data-Driven Organization. MIT Sloan Management Review; Cambridge Vol. 58, Iss. 2, (Winter 2017). URL: https://sloanreview.mit.edu/case-study/lessons-from-becoming-a-data-driven-organization/

Dan Lovallo, Daniel Kahneman, Olivier Sibony. A Structured Approach to Strategic Decisions. MIT Sloan Managment Review. Magazine Spring 2019 Issue Research Feature. Volume 60, Issue 3. URL: https://sloanreview.mit.edu/article/a-structured-approach-to-strategic-decisions/

Didier Bonnet, George Westerman. The New Elements of Digital Transformation. MIT Sloan Managment Review. Magazine Winter 2021. Volume 62, Issue 2. URL: https://sloanreview.mit.edu/article/the-new-elements-of-digital-transformation/

Mohan Subramaniam. The Future of Competitive Strategy: Unleashing the Power of Data and Digital Ecosystems (Management on the Cutting Edge) August 2022. The MIT Press. 312 р.

José Jerônimo de Menezes Lima, Emir José Redaelli. Analytical management model for data-driven companies. In book: Harmony of Knowledge: Exploring Interdisciplinary Synergie. 2023. URL: https://www.researchgate.net/publication/376502133_Analytical_management_model_for_data-driven_companies

Neil Assur, Kayvaun Rowshankish. The data-driven enterprise of 2025. URL: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-data-driven-enterprise-of-2025

Куцик П.О., Ковтун О.І. Інноваційна складова стратегічного набору підприємства: напрям розвитку інтегрованої звітності. Фінансово-кредитна діяльність: проблеми теорії та практики. 2019. № 29, Т. 2. С. 159–168. DOI: https://doi.org/10.18371/fcaptp.v2i29.171897

Ковтун О. І. Когнітивний підхід до визначення змісту, представлення та формування стратегії сучасних підприємств. Технологічний аудит та резерви виробництва. 2013. № 1/3 (9). С. 21–25.

Kutsyk P., Kovtun O., Klochan V., Klochan I., Krakhmalova N., Prokopenko O. The use of economic engineering in the context of strategic enterprise management. LAPLAGE EM REVISTA, 2021. 7(Extra-E). P. 427–436. DOI: https://doi.org/10.24115/s2446-622020217extra-e1215p.427-436

Ковтун О. І. Про методологію формування стратегії підприємства. Всеукраїнський науковий журнал «Економіка України». 2014. № 9. С. 19–34. URL: http://nbuv.gov.ua/UJRN/EkUk_2014_9_3

Zwicky, F. (1969) Discovery, Invention, Research – Through the Morphological Approach, Toronto: The Macmillan Company, 276 р.

Zwicky, F. & Wilson A. (eds.) (1967) New Methods of Thought and Procedure: Contributions to the Symposium on Methodologies, Berlin: Springer. Available at: https://www.semanticscholar.org/paper/F.-Zwicky-and-A.-G.-Wilson-(eds.)%3A-New-Methods-of-Wilson/5abd5d14a0b104e1bfea7420466f0dece5de60c4

Tom Richi (2002) Zahalnyi morfolohichnyi analiz. Zahalnyi metod nekilkisnoho modeliuvannia [General Morphological Analysis. A general method for non-quantified modelling]. Shvedske morfolohichne tovarystvo. Available at: https://ia801205.us.archive.org/12/items/ritchey_swemorph_Gma/gma.pdf

Minsky M.L., Papert S.S. (1969) Perceptrons: An Introduction to Comtutational Geometry. MIT Press, Cambrige, MA, 308 р. Available at: https://rodsmith.nz/wp-content/uploads/Minsky-and-Papert-Perceptrons.pdf

Rosenblatt F. (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, vol. 65, no. 6, pp. 386-408. Available at: https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf

Perceptrons: An Associative Learning Network by Michele D. Estebon Virginia Tech CS 3604, Spring 1997. Available at: https://ei.cs.vt.edu/~history/Perceptrons.Estebon.html

Turban, E. Decision support and expert systems: management support systems. – Englewood Cliffs, N.J.: Prentice Hall, 195. – 930 р.

Big data: The next frontier for innovation, competition, and productivity. Report / James Manyika, Michel Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, Angela Hung Byers. – McKinsey Global Іnstіtute. May 2011. Available at: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation#

MacAfee А., Brynjolfsson E. (2012) “Big Data: The Management Revolution,” Harvard Business Review 90, no. 10. Available at: https://hbr.org/2012/10/big-data-the-management-revolution

W. Fleener, M. Fitzgerald, «General Mills Builds Up Big Data to Answer Big Questions». MIT Sloan Management Review, 29/05/2015. Available at: www.sloanreview.mit.edu.

Ju. Bai, Ji. Fan and R. Tsay (2016). Special Issue on Big Data. Journal of Business &Economic Statistics, vol. 34, issue 4, pp. 487–488.

Kiron David (2017) Lessons from Becoming a Data-Driven Organization. MIT Sloan Management Review; Cambridge, vol. 58, iss. 2, (Winter 2017). Available at: https://sloanreview.mit.edu/case-study/lessons-from-becoming-a-data-driven-organization/

Dan Lovallo, Daniel Kahneman, Olivier Sibony. A Structured Approach to Strategic Decisions. MIT Sloan Managment Review. Magazine Spring 2019 Issue Research Feature, vol. 60, is. 3. Available at: https://sloanreview.mit.edu/article/a-structured-approach-to-strategic-decisions/

Didier Bonnet, George Westerman. The New Elements of Digital Transformation. MIT Sloan Managment Review. Magazine Winter 2021 Issue Research Feature, vol. 62, is. 2. Available at: https://sloanreview.mit.edu/article/the-new-elements-of-digital-transformation/

Mohan Subramaniam. The Future of Competitive Strategy: Unleashing the Power of Data and Digital Ecosystems (Management on the Cutting Edge) August 2022. The MIT Press. 312 р.

José Jerônimo de Menezes Lima, Emir José Redaelli (2023) Analytical management model for data-driven companies. In book: Harmony of Knowledge: Exploring Interdisciplinary Synergie. Available at: https://www.researchgate.net/publication/376502133_Analytical_management_model_for_data-driven_companies

Neil Assur, Kayvaun Rowshankish. The data-driven enterprise of 2025. Available at: https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-data-driven-enterprise-of-2025

Kutsyk P.O., Kovtun O.I. (2019) Innovaciina skladova stratehicznoho naboru pidpryiemstva: napriamy rozvytku integrovanoi zvitnosti [Innovative component of the enterprise's strategic set: direction of development of integrated reporting]. Finansovo-kredytna dialnist: problemy teorii ta praktyky, no. 29, vol. 2, pp. 159–168. DOI: https://doi.org/10.18371/fcaptp.v2i29.171897

Kovtun O. I. (2013) Kognityvnyj pidhid do vyznaczennia zmistu, predstavlennia ta formuvannia stratehii suczasnyh pidpryiemstv [Cognitive approach to determining the content, presentation and formation of the strategy of modern enterprises]. Tehnologicznyj audyt ta rezervy vyrobnyctva, no. 1/3 (9), pp. 21–25.

Kutsyk P., Kovtun O., Klochan V., Klochan I., Krakhmalova N., Prokopenko O. (2021) The use of economic engineering in the context of strategic enterprise management. LAPLAGE EM REVISTA, 7(Extra-E). P. 427–436. DOI: https://doi.org/10.24115/s2446-622020217extra-e1215p.427-436

Kovtun O.I. (2014) Pro metodolohiu formuvannia stratehii pidpryiemstva [About the methodology of forming the company's strategy]. Ekonomika Ukrainy, no. 9, pp. 19–34. Available at: http://nbuv.gov.ua/UJRN/EkUk_2014_9_3

Article views: 49
PDF Downloads: 23
Published
2024-09-30
How to Cite
Kutsyk, P., & Kovtun, O. (2024). DETERMINATION OF A PROMISING BUSINESS AND MODELING OF THE OPTIMUM STRATEGIC SETS FOR THE ENTERPRISES THROUGH MORPHOLOGICAL ANALYSIS USING THE CAPABILITIES OF ARTIFICIAL INTELLIGENCE. Digital Есопоmу and Economic Security, (5 (14), 127-136. https://doi.org/10.32782/dees.14-20