INFLATION PROCESSES IN UKRAINE: AUTOREGRESSIVE LAG DISTRIBUTED MODEL

Keywords: inflation processes, autoregressive model, inflation, inflation expectations, ARDL-model

Abstract

The purpose of the investigation is to identify and quantify the inflation processes in Ukraine and development of the econometric model of inflationary processes based on causal relationships with key indicators Methodology of research. To achieve the goal of the investigation, econometric modeling methods were used, namely autoregressive distributed lag model (ARDL). Findings. The economic variables that affect inflation are analyzed. The results of the analysis of variables for causality, multicollinearity and testing of time series for stationarity are presented. The ARDL approach to modeling inflationary processes in Ukraine has been implemented, based on CPI indicators, the exchange rate of the hryvnia to the US dollar, inflation expectations, and the interest rate on deposits. An analysis of the quality of the ARDL model of inflationary processes was carried out using statistical indicators. Therefore, according to the Granger test and the analysis of the statistical significance of the ARDL model factors, the selected indicators have an impact on the development of the phenomenon of inflation in Ukraine, which is manifested in the change in the price index. According to the ARDL-model, the current value of the CPI is influenced by its previous value, the value of the exchange rate with a lag of one period, inflation expectations with a lag of one and two periods, and the current value of interest rate on the deposit. The most conditional influence on the value of the CPI is its value in the previous period and the interest rate on the deposit. The implemented econometric model is adequate, which has been proven by a number of tests, so it can be used to model the behavior of the inflation phenomenon in Ukraine. The model, of course, cannot be considered universal, but with its help, the factors that have the greatest influence on the development of inflation in the country were highlighted, which, in turn, will allow paying special attention to them when developing anti-inflation measures. Further development of this line of research in the direction of the analysis of a larger range of endogenous and exogenous indicators, the use of more complex approaches, in particular, taking into account qualitative changes (change of political power, war, etc.) and a wider range of econometric tools will allow to supplement the toolkit of macroeconomic modeling of the NBU.

References

Coibion O., Gorodnichenko Y., Kumar S., Pedemonte M. Inflation expectations as a policy tool?. Journal of International Economics. 2020. № 124, 103297.

Coibion O., Gorodnichenko Y., Weber M. Monetary policy communications and their effects on household inflation expectations. Journal of Political Economy. 2022. № 130(6). 000-000.

Forbes K. J. Has globalization changed the inflation process? BIS Working Paper. 2019. №79. 63 p.

Reis R. Losing the inflation anchor. Brookings Papers on Economic Activity. 2022. № (2). P. 307-379.

Hoffmann M., Moench E., Pavlova L., Schultefrankenfeld G. Would households understand average inflation targeting?. Journal of Monetary Economics. 2022. P. 50

Вдовин М., Міщук Т. Рейтингування регіонів України за показниками добробуту населення. Вісник Сумського національного аграрного університету. 2022. Вип. (1 (91)). С. 3-9.

Вдовин М., Зомчак Л., Міщук Т. Аналітика сучасного стану добробуту населення України. Економіка та суспільство. 2022. № 39.

Abdulrahman B. M. A., Ahmed A. Y. A., Abdellah A. E. Y. Forecasting of Sudan Inflation Rates using ARIMA Model. International Journal of Economics and Financial Issues. 2018. Vol. 8(3), P. 17.

Nyoni T. Modeling and forecasting inflation in Kenya: Recent insights from ARIMA and GARCH analysis. Dimorian Review. 2018. Vol. 5(6). P. 16-40.

Işığıçok E., Öz, R., Tarkun S. Forecasting and technical comparison of inflation in Turkey with box-jenkins (ARIMA) models and the artificial neural network. International Journal of Energy Optimization and Engineering (IJEOE). 2020. Vol. 9(4). P. 84-103.

Helmy O., Fayed M., Hussien K. Exchange rate pass-through to inflation in Egypt: a structural VAR approach. Review of Economics and political science. 2018. Pp. 2-19

Salim A. Macroeconomic determinants of interest rate volatility in Indonesia: a structural var analysis. International Journal of Applied Economics, Finance and Accounting. 2019. Vol. 5(2). P. 101-108.

Sean M., Pastpipatkul P., Boonyakunakorn P. Money supply, inflation and exchange rate movement: the case of Cambodia by Bayesian VAR approach. Journal of Management, Economics, and Industrial Organization. 2019. Vol. 3(1). P. 63-81.

Beckmann J., Belke A., Dubova I. What drives updates of inflation expectations? A Bayesian VAR analysis for the G‐7 countries. The World Economy. 2022. Vol. 45. No. 1

Зомчак Л. М., Старчевська І. М. Симультативне моделювання залежності економічного зростання та рівня інфляції України. Науковий вісник Полтавського університету економіки і торгівлі. Серія «Економічні науки». 2022. Вип. 1 (105)). С. 78-85.

Hong P., Zhang F. Exchange Rate Pass-Through into China’s Import Prices: An Empirical Analysis Based on ARDL Model. Open Journal of Social Sciences. 2016. №4. P.13-22.

Національний банк України. Статистика. URL: https://bank.gov.ua/ua/statistic (дата звернення: 05.08.2022).

Coibion O., Gorodnichenko Y., Kumar S., Pedemonte M. (2020) Inflation expectations as a policy tool?. Journal of International Economics, no. 124, 103297.

Coibion O., Gorodnichenko Y., Weber M. (2022) Monetary policy communications and their effects on household inflation expectations. Journal of Political Economy, no. 130(6).

Forbes K. J. (2019) Has globalization changed the inflation process? BIS Working Paper, no. 79, 63 p.

Reis R. (2022) Losing the inflation anchor. Brookings Papers on Economic Activity, no. (2), pp. 307-379.

Hoffmann M., Moench E., Pavlova L., Schultefrankenfeld G. (2022) Would households understand average inflation targeting?. Journal of Monetary Economics, 50p.

Vdovyn M., Mishchuk T. (2022) Reitynhuvannia rehioniv Ukrainy za pokaznykamy dobrobutu naselennia [Ranking of the regions of Ukraine according to indicators of population well-being]. Visnyk Sumskoho natsionalnoho ahrarnoho universytet, vol. (1 (91)), pp. 3-9.

Vdovyn M., Zomchak L., Mishchuk T. Analityka suchasnoho stanu dobrobutu naselennia Ukrainy [Analysis of the current state of well-being of the population of Ukraine]. Ekonomika ta suspilstvo, no. 39.

Abdulrahman B. M. A., Ahmed A. Y. A., Abdellah A. E. Y. (2018) Forecasting of Sudan Inflation Rates using ARIMA Model. International Journal of Economics and Financial Issues, vol. 8(3), pp. 17.

Nyoni T. (2018) Modeling and forecasting inflation in Kenya: Recent insights from ARIMA and GARCH analysis. Dimorian Review, vol. 5(6), pp. 16-40.

Işığıçok E., Öz, R., Tarkun S. (2020) Forecasting and technical comparison of inflation in Turkey with box-jenkins (ARIMA) models and the artificial neural network. International Journal of Energy Optimization and Engineering (IJEOE), vol. 9(4), pp. 84-103.

Helmy O., Fayed M., Hussien K. (2018) Exchange rate pass-through to inflation in Egypt: a structural VAR approach. Review of Economics and political science, pp. 2-19

Salim A. (2019) Macroeconomic determinants of interest rate volatility in Indonesia: a structural var analysis. International Journal of Applied Economics, Finance and Accounting, vol. 5(2), pp. 101-108.

Sean M., Pastpipatkul P., Boonyakunakorn P. (2019) Money supply, inflation and exchange rate movement: the case of Cambodia by Bayesian VAR approach. Journal of Management, Economics, and Industrial Organization, vol. 3(1), pp. 63-81.

Beckmann J., Belke A., Dubova I. (2022) What drives updates of inflation expectations? A Bayesian VAR analysis for the G‐7 countries. The World Economy, vol. 45, no. 1

Zomchak L. M., Starchevska I. M. (2022) Symultatyvne modeliuvannia zalezhnosti ekonomichnoho zrostannia ta rivnia infliatsii Ukrainy [Simultative modeling of the dependence of economic growth and the level of inflation in Ukraine]. Naukovyi visnyk Poltavskoho universytetu ekonomiky i torhivli. Seriia «Ekonomichni nauky», vol. 1 (105), pp. 78-85.

Hong P., Zhang F. (2016) Exchange Rate Pass-Through into China’s Import Prices: An Empirical Analysis Based on ARDL Model. Open Journal of Social Sciences, no. 4, pp.13-22.

Natsionalnyi bank Ukrainy [National Bank of Ukraine]. Statystyk. Available at: https://bank.gov.ua/ua/statistic (accessed 05.08.2022).

Article views: 343
PDF Downloads: 181
Published
2022-08-29
How to Cite
Zomchak, L., & Lapinkova, A. (2022). INFLATION PROCESSES IN UKRAINE: AUTOREGRESSIVE LAG DISTRIBUTED MODEL. Digital Есопоmу and Economic Security, (1 (01), 50-55. https://doi.org/10.32782/dees.1-8