ASSESSMENT OF CORPORATE FINANCIAL SECURITY USING MACHINE LEARNING METHODS

  • Maksym Bilychenko National Aviation University
Keywords: financial security, forecasting, enterprise bankruptcy, machine learning, financial indicators

Abstract

This article investigates the development and comparative analysis of advanced machine learning methodologies for bankruptcy prediction, utilizing financial indicators from a comprehensive dataset of Ukrainian companies. Additionally, it provides practical recommendations for the application of these models in domestic enterprises, specifically within the context of crisis management. The study addresses various methods and models from both international and domestic literature for evaluating financial security and bankruptcy probability, including well-known models by E. Altman and R. Liss, as well as models by O. Tereshchenko and A. Matviychuk. The article proposes a machine learning solution using a dataset of 570 Ukrainian companies, balanced and encompassing 22 financial indicators for the period of 2014 to 2018. The study employs classic Logistic Regression and four advanced algorithms - Random Forest, XGBoost, SVM, and neural networks. The quality of models was evaluated using F-beta 2, ROC AUC, and Accuracy metrics. The article emphasizes the importance of Recall in evaluating the models, as missing a bankruptcy prediction can be more detrimental than a false positive. The results show that, with proper parameter adjustments and regularization to avoid overfitting, XGBoost performs the best, making it a highly effective tool for predicting company bankruptcies. The findings underscore XGBoost superior predictive accuracy and stability, which is crucial for reducing risks and enhancing the financial stability of enterprises. The model's high accuracy and relevance offer substantial potential for practical applications in the financial sector, enterprise management, investment activities, and public policy. Implementing these advanced machine learning methods in Ukraine's relatively unstable economic conditions could provide critical support for maintaining business stability and fostering economic growth. The core of the research highlights the importance of financial security for businesses as a cornerstone of their economic stability, emphasizing that it allows for the identification of potential threats and risks, enabling timely and effective solutions through the company's strengths to ensure sustainable financial health and future growth.

References

Gordon M.J. Towards a Theory of Financial Distress. Journal of Finance, American Finance Association. 1971. 26(2). P. 347-356.

Clarke R.G. Strategic Financial Management. Irwin Professional Publishing, 1990. 241 p.

Christoffersen P. Elements of Financial Risk Management. Academic Press, 2011. 344 p.

Kloman F.H. A Brief History of Risk Management. Enterprise Risk Management. 2011. P. 19-29. DOI: https://doi.org/10.1002/9781118267080.ch2

Ареф'єва О.В., Кузенко Т.Б. Планування економічної безпеки підприємств. К.: Євро¬пейський університет, 2004. 170 с.

Барановський О.І. Фінансова безпека. К: Фенікс, 1999. 338 с.

Козак Л.С., Багровецька І.В. Концептуальні та методичні засади формування механізму забезпечення фінансової безпеки підприємства. Економіка і управління. 2008. №13. С. 97-101.

Журавка О.С., Бондаренко Є.К. Теоретичні аспекти формування системи фінансової безпеки підприємства. Інноваційна економіка. 2012. № 4. С. 234-237.

Волкова Н., Степанко О. Прогнозування ризику настання банкрутства на підприємстві. Цифрова економіка та економічна безпека. 2022. № 2 (02). С. 173-178. DOI: https://doi.org/10.32782/dees.2-29

Седікова І., Седіков Д., Коренман Є. Фінансова безпека підприємства: поняття та критерії оцінки. Таврійський науковий вісник. Серія: Економіка. 2022. № 11. С. 86-94. DOI: https://doi.org/10.32851/2708-0366/2022.11.12

Aker Y., Karavardar A. Using machine learning methods in financial distress prediction: sample of small and medium sized enterprises operating in Turkey. Ege Academic Review. 2023. 23(2). P. 145-162. DOI: https://doi.org/10.21121/eab.1027084

Shi Y., Li X. An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intangible Capital. 2019. 15(2). P. 114-127. DOI: https://doi.org/10.3926/ic.1354

Чеберяко О.В., Кривовяз М.А. Структурні елементи системи забезпечення фінансової безпеки підприємства. Ефективна економіка. 2015. № 10. С. 19-34

Краснокутська Н.С., Коптєва Г.М. Дефініція поняття «фінансова безпека підприємства»: основні підходи та особливості. БІЗНЕС-ІНФОРМ. 2019. № 7. С. 14-19.

Сердюков К.Г., Головченко Ю.В. Теоретичні аспекти фінансової безпеки підприємства. Економіка та суспільство. 2017. №9. С. 627-631.

Ситник Н., Бацман І. Оцінка рівня фінансової безпеки підприємства (на прикладі підприємства ТзОВ «Уніплит»). Галицький економічний вісник. 2023. Том 82. № 3. С. 98-105.

Пінчук С.С., Соколова Е.О. Оцінка рівня фінансової безпеки підприємства залізничного транспорту з використанням інтегрального показника банкрутства. Ефективна економіка. 2021. № 5. DOI: 10.32702/2307-2105-2021.5.73

Hamdi M, Mestiri S, Arbi A. Artificial intelligence techniques for bankruptcy prediction of Tunisian companies: an application of machine learning and deep learning-based models. Journal of Risk and Financial Management. 2024. № 17(4):132. DOI: https://doi.org/10.3390/jrfm17040132

Gordon M. J. (1971). Towards a Theory of Financial Distress [Towards a Theory of Financial Distress]. Journal of Finance, American Finance Association, 26(2), 347-356.

Clarke, R. G. (1990). Strategic Financial Management [Strategic Financial Management]. Irwin Professional Publishing.

Christoffersen, P. (2011). Elements of financial risk management [Elements of financial risk management]. Academic Press.

Kloman F. H. (2011). A Brief History of Risk Management [A Brief History of Risk Management]. Enterprise Risk Management, 19-29. DOI: https://doi.org/10.1002/9781118267080.ch2

Arefieva O. V., Kuzenko T. B. (2004). Planuvannia ekonomichnoi bezpeky pidpryiemstv [Planning of economic security of enterprises]. Yevropeiskyi universytet.

Baranovskyi O. I. (1999). Finansova bezpeka [Financial security]. Feniks.

Kozak L. S., Bahrovetska I. V. (2008). Kontseptualni ta metodychni zasady formuvannia mekhanizmu zabezpechennia finansovoi bezpeky pidpryiemstva [Conceptual and methodical principles of the formation of the mechanism for ensuring the financial security of the enterprise]. Ekonomika i upravlinnia, 13, 97-101.

Zhuravka O. S., Bondarenko Ye. K. (2012). Teoretychni aspekty formuvannia systemy finansovoi bezpeky pidpryiemstva [Theoretical aspects of the formation of the system of financial security of the enterprise]. Innovatsiina ekonomika, 4, 234-237.

Volkova N., Stepanko O. (2022). Prohnozuvannia ryzyku nastannia bankrutstva na pidpryiemstvi [Forecasting the risk of bankruptcy at the enterprise]. Tsyfrova ekonomika ta ekonomichna bezpeka, 2 (02), 173-178. DOI: https://doi.org/10.32782/dees.2-29

Sedikova I., Sedikov D., Korenman Ye. (2022). Finansova bezpeka pidpryiemstva: poniattia ta kryterii otsinky [Financial security of the enterprise: concepts and assessment criteria]. Tavriiskyi naukovyi visnyk. Seriia: Ekonomika, 11, 86-94. DOI: https://doi.org/10.32851/2708-0366/2022.11.12

Aker, Y., Karavardar, A. (2023). Using machine learning methods in financial distress prediction: sample of small and medium sized enterprises operating in Turkey [Using machine learning methods in financial distress prediction: sample of small and medium sized enterprises operating in Turkey]. Ege Academic Review, 23(2), 145-162. DOI: https://doi.org/10.21121/eab.1027084

Shi Y., Li X. (2019). An overview of bankruptcy prediction models for corporate firms: A systematic literature review [An overview of bankruptcy prediction models for corporate firms: A systematic literature review]. Intangible Capital, 15(2), 114-127. DOI: https://doi.org/10.3926/ic.1354

Cheberiako O. V., Kryvoviaz M. A. (2015). Strukturni elementy systemy zabezpechennia finansovoi bezpeky pidpryiemstva [Structural elements of the system of ensuring financial security of the enterprise]. Efektyvna ekonomika, 10, 19-34.

Krasnokutska N. S., Koptieva H. M. (2019). Definitsiia poniattia «finansova bezpeka pidpryiemstva»: osnovni pidkhody ta osoblyvosti [Definition of the concept of "financial security of the enterprise": main approaches and features]. BIZNESINFORM, 7, 14-19.

Serdiukov K. H., Holovchenko Yu. V. (2017). Teoretychni aspekty finansovoi bezpeky pidpryiemstva [Theoretical aspects of financial security of the enterprise]. Ekonomika ta suspilstvo, 9, 627-631.

Sytnyk N., Batsman I. (2023). Otsinka rivnia finansovoi bezpeky pidpryiemstva (na prykladi pidpryiemstva TzOV «Uniplyt») [Assessment of the level of financial security of the enterprise (on the example of Uniplyt LLC)]. Halytskyi ekonomichnyi visnyk, 82(3), 98-105.

Pinchuk S. S., Sokolova E. O. (2021). Otsinka rivnia finansovoi bezpeky pidpryiemstva zaliznychnoho transportu z vykorystanniam intehralnoho pokaznyka bankrutstva [Assessment of the level of financial security of the railway transport enterprise using the integral indicator of bankruptcy]. Efektyvna ekonomika, 5. DOI: 10.32702/2307-2105-2021.5.73

Hamdi M, Mestiri S, Arbi A. (2024). Artificial intelligence techniques for bankruptcy prediction of Tunisian companies: an application of machine learning and deep learning-based models [Artificial intelligence techniques for bankruptcy prediction of Tunisian companies: an application of machine learning and deep learning-based models]. Journal of Risk and Financial Management, 17(4):132. DOI: https://doi.org/10.3390/jrfm17040132

Article views: 55
PDF Downloads: 39
Published
2024-06-24
How to Cite
Bilychenko, M. (2024). ASSESSMENT OF CORPORATE FINANCIAL SECURITY USING MACHINE LEARNING METHODS. Digital Есопоmу and Economic Security, (4 (13), 101-107. https://doi.org/10.32782/dees.13-15