LARGE LANGUAGE MODELS FOR TIME SERIES ANALYSIS IN RETAIL: PERSPECTIVES AND OPPORTUNITIES

  • Oleksandr Kosovan Ivan Franko National University of Lviv
  • Myroslav Datsko Ivan Franko National University of Lviv
Keywords: retail, time series analysis, sales forecasting, large language models, digital economy

Abstract

The article presents a comprehensive overview of state-of-the-art methodologies in the retail industry, framed within the context of Retail 4.0. It delves into the usage of various cutting-edge technologies, including large language models (LLMs), machine learning algorithms, statistical methods, and econometrics models. Specifically, the study explores the potential of LLMs in conducting time series analysis, identifying three primary avenues of their application: as supportive tools, forecasting mechanisms utilizing zero-shot learning principles, and next-generation agents with interactive functionality. Each application direction is examined, detailing their respective advantages and drawbacks, alongside highlighting the existing gaps or constraints in empirical research within the field. The research includes empirical experiments conducted with the TimeGPT model, a foundational model tailored for time series analysis. This model demonstrated competitiveness when compared against classical methodologies. However, the study emphasizes the necessity of expanding experimentation to collect more information to evaluate the solution in the context of sales forecasting tasks. Moreover, the article describes the development of a next-generation agent leveraging OpenAI models and the Assistant API. This agent exhibits proficiency in conducting statistical analyses of sales history datasets and generating predictions through autoregression techniques. Overall, the research underscores the promising prospects of integrating large language models into retail operations while emphasizing the imperative to broaden the scope of research in this domain. Furthermore, the application of LLMs is scrutinized through the lens of sustainability objectives, environmental implications, computational expenses, and potential risks pertaining to privacy and security. LLMs raise significant concerns regarding confidentiality and security, given the sensitivity of retail datasets, which poses risks in case of data breaches. Despite the availability of computational power, the training and deployment of LLMs remain costly. Therefore, companies must conduct comprehensive cost-benefit analyses to ensure profitability. Additionally, the substantial energy consumption associated with large computational resources raises environmental concerns. It is crucial to critically assess these impacts, even though research in this area is still in its infancy. While the adoption of artificial intelligence systems can positively contribute to sustainable development goals by overcoming existing limitations, challenges such as unequal access to technology and income redistribution need to be addressed to ensure inclusive progress.

References

Har, L. L., Rashid, U. K., Chuan, L. T., Sen, S. C., & Xia, L. Y. (2022). Revolution of Retail Industry: From Perspective of Retail 1.0 to 4.0. In Procedia Computer Science (Vol. 200, pp. 1615–1625). Elsevier BV. https://doi.org/10.1016/j.procs.2022.01.362

Kosovan, O., Datsko, M. (2024). Complex Comparison of Statistical and Econometrics Methods for Sales Forecasting. In: Silhavy, R., Silhavy, P. (eds) Data Analytics in System Engineering. CoMeSySo 2023. Lecture Notes in Networks and Systems, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-031-54820-8_27

Dahake, P. S., Bagaregari, P., & Dahake, N. S. (2024). Shaping the Future of Retail: A Comprehensive Review of Predictive Analytics Models for Consumer Behavior. In S. Inder, B. Min, & S. Sharma (Eds.), Entrepreneurship and Creativity in the Metaverse (pp. 143-160). IGI Global. https://doi.org/10.4018/979-8-3693-1734-1.ch011

Косован, О., & Дацко, М. (2023). ІНТЕРПРЕТАЦІЯ АЛГОРИТМІВ МАШИННОГО НАВЧАННЯ ДЛЯ ПРИЙНЯТТЯ РІШЕНЬ У РОЗДРІБНІЙ ТОРГІВЛІ. Економіка та суспільство, (47). https://doi.org/10.32782/2524-0072/2023-47-47

Jin, M., Zhang, Y., Chen, W., Zhang, K., Liang, Y., Yang, B., Wang, J., Pan, S., & Wen, Q. (2024). Position Paper: What Can Large Language Models Tell Us about Time Series Analysis (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2402.02713

Korinek, A. (2023, January). Generative AI for Economic Research: Use Cases and Implications for Economists. Journal of Economic Literature, 61(4), 1281-1317. https://doi.org/10.1257/jel.20231736

Li, N., Gao, C., Li, Y., & Liao, Q. (2023). Large Language Model-Empowered Agents for Simulating Macroeconomic Activities (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2310.10436

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large Language Models: A Survey (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2402.06196

Fatouros, G., Metaxas, K., Soldatos, J., & Kyriazis, D. (2024). Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2401.03737

Garza, A., & Mergenthaler-Canseco, M. (2023). TimeGPT-1 (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2310.03589

Kosovan, O. (2022). FOZZY GROUP HACK4RETAIL COMPETITION OVERVIEW: RESULTS, FINDINGS, AND CONCLUSIONS. In Market Infrastructure (Issue 67). Publishing House Helvetica (Publications). https://doi.org/10.32843/infrastruct67-42

Vinuesa, R., Azizpour, H., Leite, I. et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat Commun 11, 233 (2020). https://doi.org/10.1038/s41467-019-14108-y

Dobbs, R. et al. Poorer Than Their Parents? Flat or Falling Incomes in Advanced Economies (McKinsey Global Institute, 2016).

Har, L. L., Rashid, U. K., Chuan, L. T., Sen, S. C., & Xia, L. Y. (2022). Revolution of Retail Industry: From Perspective of Retail 1.0 to 4.0. In Procedia Computer Science (Vol. 200, pp. 1615–1625). Elsevier BV. https://doi.org/10.1016/j.procs.2022.01.362

Kosovan, O., Datsko, M. (2024). Complex Comparison of Statistical and Econometrics Methods for Sales Forecasting. In: Silhavy, R., Silhavy, P. (eds) Data Analytics in System Engineering. CoMeSySo 2023. Lecture Notes in Networks and Systems, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-031-54820-8_27

Dahake, P. S., Bagaregari, P., & Dahake, N. S. (2024). Shaping the Future of Retail: A Comprehensive Review of Predictive Analytics Models for Consumer Behavior. In S. Inder, B. Min, & S. Sharma (Eds.), Entrepreneurship and Creativity in the Metaverse (pp. 143-160). IGI Global. https://doi.org/10.4018/979-8-3693-1734-1.ch011

Kosovan, O., Datsko, M. (2023). INTERPRETATION OF MACHINE LEARNING ALGORITHMS FOR DECISION MAKING IN RETAIL. Economics and Society, (47). https://doi.org/10.32782/2524-0072/2023-47-47

Jin, M., Zhang, Y., Chen, W., Zhang, K., Liang, Y., Yang, B., Wang, J., Pan, S., & Wen, Q. (2024). Position Paper: What Can Large Language Models Tell Us about Time Series Analysis (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2402.02713

Korinek, A. (2023, January). Generative AI for Economic Research: Use Cases and Implications for Economists. Journal of Economic Literature, 61(4), 1281-1317. https://doi.org/10.1257/jel.20231736

Li, N., Gao, C., Li, Y., & Liao, Q. (2023). Large Language Model-Empowered Agents for Simulating Macroeconomic Activities (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2310.10436

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., & Gao, J. (2024). Large Language Models: A Survey (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2402.06196

Fatouros, G., Metaxas, K., Soldatos, J., & Kyriazis, D. (2024). Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2401.03737

Garza, A., & Mergenthaler-Canseco, M. (2023). TimeGPT-1 (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2310.03589

Kosovan, O. (2022). FOZZY GROUP HACK4RETAIL COMPETITION OVERVIEW: RESULTS, FINDINGS, AND CONCLUSIONS. In Market Infrastructure (Issue 67). Publishing House Helvetica (Publications). https://doi.org/10.32843/infrastruct67-42

Vinuesa, R., Azizpour, H., Leite, I. et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat Commun 11, 233 (2020). https://doi.org/10.1038/s41467-019-14108-y

Dobbs, R. et al. Poorer Than Their Parents? Flat or Falling Incomes in Advanced Economies (McKinsey Global Institute, 2016).

Article views: 120
PDF Downloads: 93
Published
2024-01-29
How to Cite
Kosovan, O., & Datsko , M. (2024). LARGE LANGUAGE MODELS FOR TIME SERIES ANALYSIS IN RETAIL: PERSPECTIVES AND OPPORTUNITIES. Digital Есопоmу and Economic Security, (1 (10), 199-205. https://doi.org/10.32782/dees.10-35